SCOP: Structural Classification of Proteins

Structural Classification of Proteins

Protein: Platelet factor 4, PF4 from Cow (Bos taurus)

Lineage:

- 1. Root: scop
- Class: <u>Alpha and beta proteins (a+b)</u> Mainly antiparallel beta sheets (segregated alpha and beta regions)
- Fold: <u>IL8-like</u> beta(3)-alpha
- 4. Superfamily: Interleukin 8-like chemokines form dimers with different dimerisation modes
- 5. Family: Interleukin 8-like chemokines
- 6. Protein: Platelet factor 4, PF4
- 7. Species: Cow (Bos taurus)

PDB Entry Domains:

1. <u>1plf</u> 🚨 📽

complexed with tcn

- 1. <u>chain a</u> 🚨 📽 🖪
- 2. <u>chain b</u> 🚨 📽 🗳
- 2 1 1 1 1 1 10 10 10

Murzin et al. 1995

Il8-like Domain

MMS-Code

- : 54117
- Class :

Number of Members

Average Size : 71

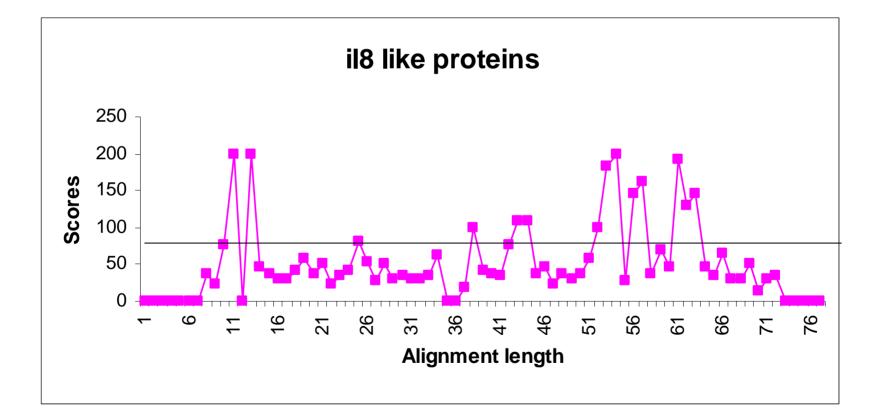
- Alpha and Beta Proteins (a+b)
- : 2

Percentage Identity Matrix

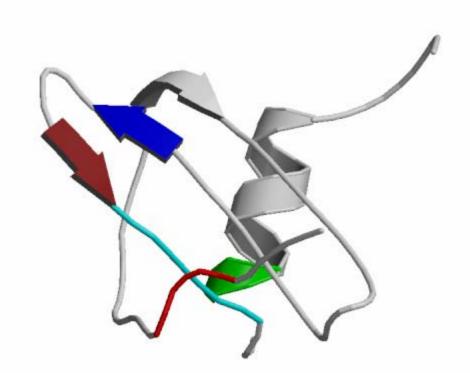
	1ikl-	1huma
1ikl-	100.0	21.0
1huma	21.0	100.0

Alignment Based On Similarities In Structural Features in Interleukin Superfamily

1ikl-elrçqçikTyskpfhpkfIkeL1humaapmgsdpptaç-çfsytarklprnfVvdy

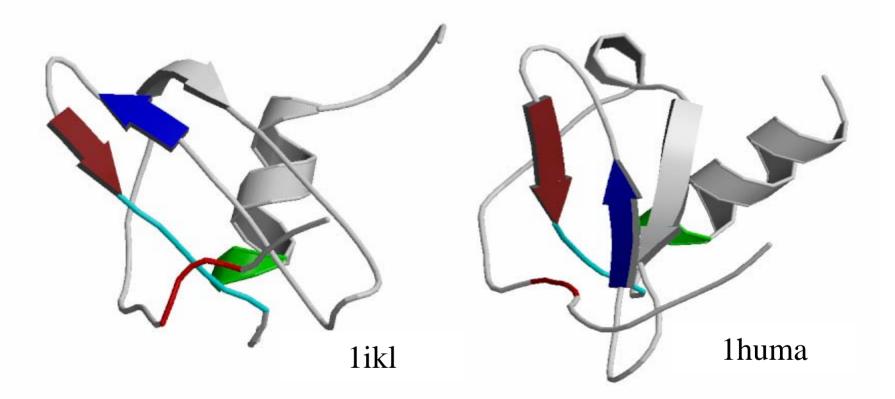

- 1ikl- rviesgphçantelivklsdg
 1huma yeTslçsqpAvVFqTkrs--bb bbbb

Alignment with Homologues in HOMSTRAD database


1huma 1b3aa 2eot 1plfa 1rhpa 1tvxa 1mi2a 1mi2a 1roda 1il8a 1sdf	1 23 7 23 1 1 2 1)))))))))))))))))))))))))))))))))))))))	py s s-d- gpa asva avva sa a	ttpçÇfa svpttÇçfn lqçvçlkt d <i>lq</i> ç <i>l</i> Çvkt lrçlÇikt telrçqÇlqt sel <u>rçqç</u> lkt kelrç <u>q</u> çikt	jiarplp <u>r</u> ah lanrkiplqr ts-qVrprh ts-qVrprh lq-Gihpkn lq-Gihpkn yskpfhpkf yskpfhPkf	IkeyfyT- Lesyrrit IssLevid IgsLevid Igslevid Igsvnvk Igslsvtg ikelrvid Ikelrvid	40 ss-lçs <u>q</u> pAvVF sg-kÇs <u>n</u> pAVVF sg-kÇpqkaVif gaglhÇpsp qLif gaglhÇpsp qLif gaghÇngveVif spgphÇaqt <u>EVif</u> sggp <u>h</u> Çaqt <u>EVif</u> sggp <u>h</u> Çanteii sggp <u>h</u> Çant <u>e</u> ii bbbb	Fvtr Sktk Atlk Atlk Atlk Atlk VkLs Vkls ArLk
1huma 1b3aa 2eot 1plfa 1rhpa 1tvxa 1mgsa 1mi2a 1roda 1il8a 1sdf	4654646546464644654444544466464464444444		k- <i>n</i> rqvçA 1- <i>a</i> kdiÇA t- <i>g</i> rkiçI n- <i>g</i> rkiçI d- <i>g</i> rkiçI n- <i>g</i> rkaçI <i>g</i> - <i>g</i> qkvÇI d-grelÇI <u>d</u> - <i>g</i> relÇI nn <u><i>n</i></u> rqvçI	60 dpseswVqey npekkwV <u>rey</u> dpkkkwV <u>qd</u> dqqnplykki dlqaplykki dpdaprI <u>kki</u> dpdaprI <u>kki</u> dpa <u>s</u> piVkki dpsenwVqrv dpklkwI <u>q</u> ey	ZInslems Smkyldqksp Iik <u>r</u> llks Ii <u>k</u> kll <i>es</i> Ivq <u>kk</u> lagd Iie <u>k</u> mln <u>sd</u> k iiqkilnkgk iiekml <u>n</u> sdk vvekflkrae /lekaln	<i>sn</i> an <u>s</u> n		

bbbb aaaaaaaaaaa

Alignment Score of il8-like Superfamily



Interacting Motifs of the il8 superfamily

likl- (4)	e l rçqçi kTyskpf h pkfIkeLrviesgp h çant <mark>eIiVkls</mark> dg
1huma (1)	apmgsdpptaç-çfsytarklp <mark>rnf</mark> Vvdyye r sslçs <u>q</u> pAvVF gr krs
		bb bbb
likl- (47)	relÇL d pk <u>enw</u> Vgrvv <u>e</u> kflk <i>r</i> aens
lhuma (48)	kqvçAdpseswVqeyvy <u>d</u> leln
		bb aaaaaaaaaa

Conservation of the motifs in the structures

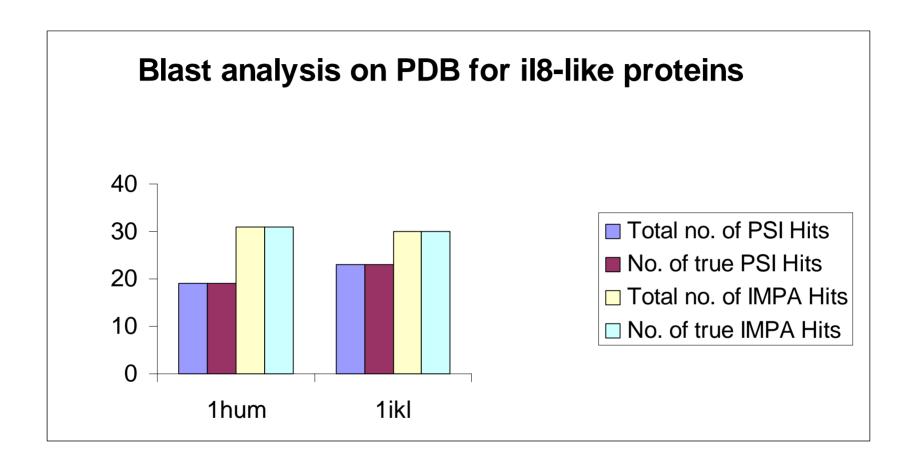
Bhaduri, A., Ravishankar, R. & Sowdhamini, R., Proteins Structure, Function and Genetics (in press)

Employing structural motifs for sensitive sequence searches

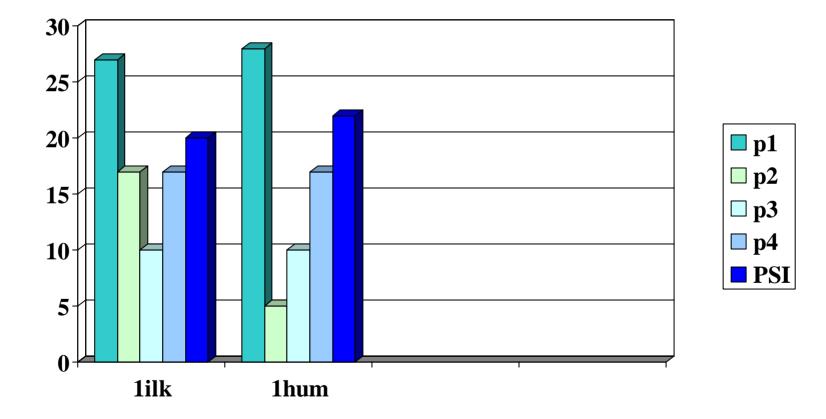
Step 1:

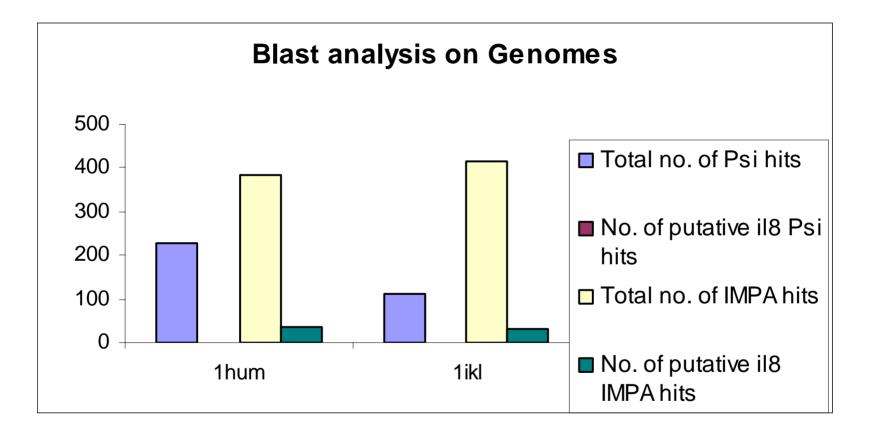
Homologous sequences of individual superfamily members are aligned and amino acid exchanges at individual positions were scored for conservation.

Step 2:

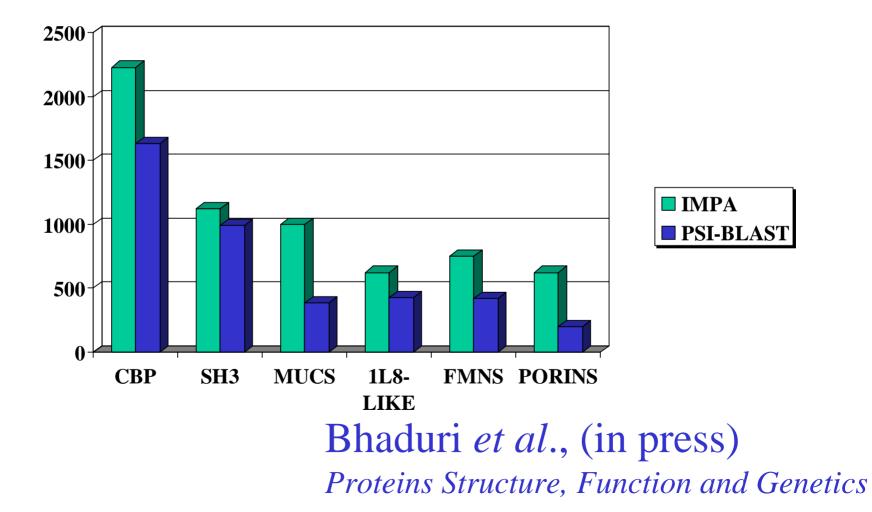

Homologous sequences of individual superfamily members are aligned and amino acid exchanges at individual positions were scored for conservation.

Step 3:

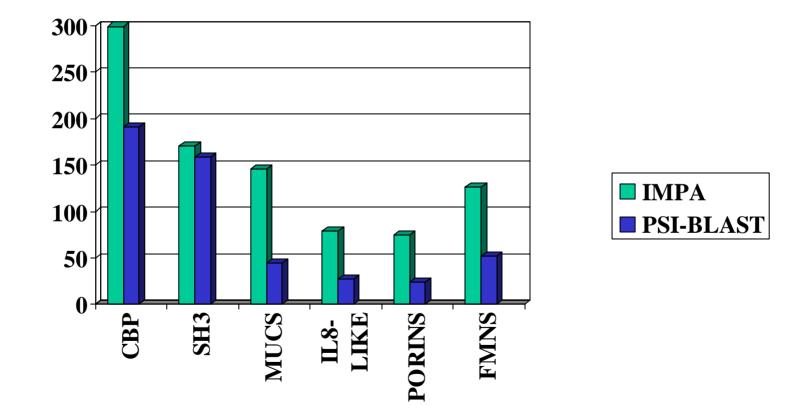

Spatially interacting motifs, when mapped on the superfamily alignment if in equivalent positions are considered for constrained sequence searches

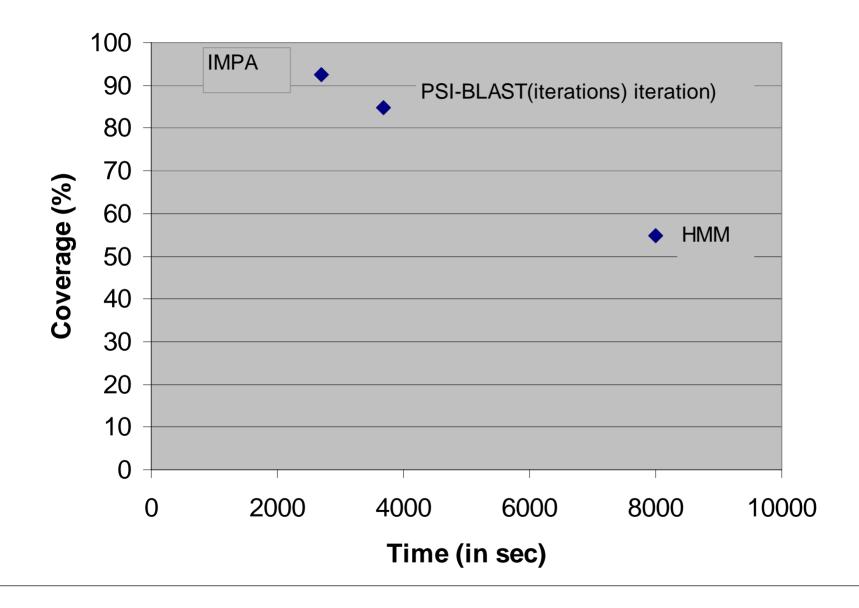

Interacting Motif Pattern Assisted (IMPA) Search: PHI-Blast Parameters

- Patterns obtained from Interactive Motifs
- E –value 1 (Standard value 0.0001)
- Iterations used 1(Standard value 3 or 5)
- Each superfamily Member of CAMPASS was used as a query Sequence



Contribution of individual motifs of the il8-like proteins




Genome Distribution across 91 Genomes

Distribution of Hypothetical Proteins in the genome : Putative members of the Superfamily

Performance with respect to time

Testing of The Coverage against SCOP

Superfamily	IMPALA	BLAST	IMPA	TOTAL
SH3	58	54	56	67
Porins	31	24	33	33
Mucs	20	18	18	20
FMNs	17	5	16	18
Il8-like	34	34	34	35
CBP	111	99	105	125

Bhaduri *et al.*, (in press) *Proteins Structure, Function and Genetics*